Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее
кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10),
средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены
(рис. 3.23).


Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка 7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с
другой – на винтах присоединена труба 5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная 6 , вакуумная 3 и выходная 4 . На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

8
7
5
4
3
2
6
1

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера;
5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка;
8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола 1 , создает в конусной камере 3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе 4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

3
2
1
4

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель Размерность Тип ствола
СВП СВПЭ-2 СВПЭ-4 СВПЭ-8
Производительность по пене м 3 /мин
Рабочее давление перед стволом МПа 0,4 – 0,6 0,6 0,6 0,6
Расход воды л/с - 4,0 7,9 16,0
Расход 4 – 6 % раствора пенообразователя л/с 5 – 6 - - -
Кратность пены на выходе из ствола - 7,0 (не менее) 8,0 (не менее)
Дальность подачи пены м
Соединительная головка - ГЦ-70 ГЦ-50 ГЦ-70 ГЦ-80

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток 2 , распылителя центробежного 3 , насадка 4 и коллектора 5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель 3 и муфтовая головка ГМ-70. Пакет сеток 2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа 3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок 4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках
деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

В качестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Основным средством тушения нефтепродуктов и некоторых твёрдых горючих веществ является воздушно-механическая пена (ВМП). Она состоит из пенообразователя, воды и воздуха, и представляет собой ячеисто-плёночную дисперсную систему, состоящую из массы пузырьков воздуха, разделённых тонкими плёнками водного раствора пенообразователя.

Основным компонентом воздушно-механической пены служат пенообразователи , представляющие собой водные растворы поверхностно-активных веществ. В зависимости от химического состава пенообразователи подразделяются на синтетические, фторсинтетические, протеиновые, и фторпротеиновые. В зависимости от области применения пенообразователи классифицируются на две группы: пенообразователи общего назначения и пенообразователи целевого назначения. Пенообразователи общего назначения (чаще всего синтетические углеводородные) могут использоваться для получения пены при тушении горючих жидкостей, твёрдых сгораемых материалов, волокнистых и тлеющих веществ. В настоящее время промышленностью выпускаются следующие марки пенообразователей общего назначения: ПО-3АИ, ПО-3НП, ТЭАС, ПО-6ТС, «БАРЬЕР», «СНЕЖОК-1» и др. Пенообразователи целевого назначения (как правило, смесь фторсодержащих и углеводородных поверхностно-активных веществ) дополнительно могут применяться для получения пены при тушении пожаров отдельных видов горючих жидкостей (спирты, кетоны). При этом данная группа пенообразователей отличается повышенной огнетушащей эффективностью. К ней относятся пенообразователи САМПО, Морской А(Б), ПО-6НП, Форэтол, Универсальный, ПО-6ФП, ПО-6А3F, ПО-6МТ и др.

Воздух
Воздух
Воздушно-механическая пена

Получают воздушно-механическую пену механическим перемешиванием раствора пенообразователя с воздухом. Принципиальная схема получения воздушно-механической пены от пожарной автоцистерны показана на рисунке 3.8.

Для получения водного раствора пенообразователя в состав насосного агрегата пожарного автомобиля включёно специальное устройство- пеносмеситель . В основе работы пеносмесителя лежит насос струйного типа, где в качестве эжектируемой жидкости выступает пенообразователь. В результате перемешивания в пожарном насосе воды и пенообразователя, в пожарном насосе образуется водный раствор пенообразователя, который под напором, образуемым пожарным насосом, по пожарному рукаву подаётся к воздушно-пенному стволу. В воздушно-пенном стволе за счёт эжекции происходит подсос в струю водного раствора пенообразователя атмосферного воздуха, и на выходе из ствола получают воздушно-механическую пену.

Полученная воздушно-механическая пена характеризуется следующими основными показателями: стойкостью – способностью пены противостоять разрушению в течение определённого времени (другими словами – это время, в течение которого пена разрушается на 50% от первоначального объёма); кратностью – отношение объёма пены к объёму водного раствора из которого она получена; вязкостью – способностью пены к растеканию по поверхности; дисперсностью – степенью измельчения, т.е. размерами пузырьков. Важной характеристикой воздушно-механической пены является её электропроводность .

Различают пены низкой (до 20), средней (от 20 до 200) и высокой (свыше 200) кратности. Пены низкой кратности характеризуются большим содержанием в ней водного раствора пенообразователя и соответственно отличаются повышенной стойкостью. Высокократные пены характеризуются малым содержанием в ней водного раствора пенообразователя и повышенным содержанием в её объёме атмосферного воздуха. При этом пены высокой кратности менее стойки. На практике при эксплуатации основных пожарных автомобилей наибольшее распространение имеет воздушно-механическая пена средней и низкой кратности. Для их получения используют 6% и 3% водные растворы пенообразователя, в зависимости от марки пенообразователя. Так для получения пены средней кратности используется 6-процентный пенообразователей ПО-6ТС, ТЭАС, САМПО, ПО-6НП, Барьер, Снежок-1, ПО-6ФП, ПО-6МТ, ПО-6А3F или 3-процентный раствор пенообразователей ПО-3АИ, ПО-3НП и других. Необходимая концентрация водного раствора пенообразователя устанавливается на насосном агрегате пожарного автомобиля с помощью пеносмесителя. Для получения из водного раствора пенообразователя воздушно-механической пены и формирования пенной струи служат воздушно-пенные стволы.

Наибольшее распространение в пожарном деле имеет генератор пены средней кратности ГПС-600 (см. рис. 3.9), предназначенный для получения из 6% водного раствора пенообразователя воздушно-механической пены средней кратности.

Пеногенератор ГПС-600 представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей: распылителя 2 с соединительной головкой 1, корпуса 6 в виде диффузора струйного насоса, насадка 5 и пакета сеток 4. Распылитель соединён с корпусом пеногенератора при помощи трёх крепёжных стоек. Принцип работы ГПС-600 заключается в следующем: поток рабочей жидкости (водный раствор пенообразователя) по пожарному рукаву под давлением подаётся к распылителю пеногенератора. За счёт эжекции при входе распылённой струи в корпус (диффузор) пеногенератора происходит подсос воздуха и


перемешивание его с раствором. При прохождении смеси через сетку образуется воздушно-механическая пена.

Для нормальной работы ГПС-600 необходимо поддерживать напор раствора пенообразователя перед распылителем в пределах 60 м. вод. ст. (0,6 МПа или 6 кгс/см 2). При этом напоре производительность ГПС-600 по пене составляет 600 л/с (36 м 3 /мин), а по раствору 6 л/с; кратность получаемой пены составляет 100; дальность пенной струи – 10 метров; высота пенной струи – 5 метров.

Для получения воздушно-механической пены низкой кратности в пожарной технике применяется ствол воздушно-пенный СВП (см. рис. 3.10).

Ствол СВП состоит из корпуса 1, на котором с одной стороны укреплена соединительная головка для присоединения пожарного рукава, а с другой кожух 5, в котором пенообразующий раствор перемешивается с атмосферным воздухом и формируется пенная струя.

Принцип работы ствола СВП напоминает принцип работы ГПС-600. Раствор пенообразователя по пожарному рукаву под напором поступает в корпус ствола. Проходя через отверстия 2, поток раствора создаёт в конусной камере 3 разрежение, благодаря чему через отверстия в кожухе 4 подсасывается воздух из атмосферы. Поступающий в кожух воздух интенсивно перемешивается с пенообразующим раствором, и образует на выходе из ствола струю воздушно-механической пены.

Ствол СВП по своим параметрам (рабочему давлению перед ним и расходу водного раствора пенообразователя) соответствует параметрам генератора пены средней кратности ГПС-600. При этом его производительность по пене составляет 4 м 3 /мин; кратность получаемой пены – 7; дальность подачи пенной струи – 28 метров.




В настоящее время для получения и подачи воздушно-механической пены средней кратности успешно применяются установки комбинированного тушения пожаров УКТП «Пурга» (см. рис. 3.11). В качестве воздушно-пенного ствола для получения ВМП средней кратности используется УКТП «Пурга-5». По назначению, общему устройству и принципу работы «Пурга-5» напоминает ствол ГПС-600. УКТП "Пурга-5" выпускается в нескольких вариантах: стационарном (с ручным или дистанционным управлением), ручном с перекрывным устройством или без него (см. рис. 3.11 вверху) и морском. Для работы «Пурга-5» также применяется 6-процентный раствор пенообразователя. За счёт увеличения давления водного раствора пенообразователя на входе в ствол до 0,8 МПа и конструктивных особенностей данного ствола дальность подачи пены средней кратности составляет 20 метров при угле возвышения ствола 35º. Производительность УКТП «Пурга-5» по пене составляет 21 м 3 /мин., кратность пены 50-70. Расходные показатели УКТП «Пурга-5» по раствору и по пенообразователю практически идентичны характеристикам ствола ГПС-600. Это позволяет использовать те же, что и для ГПС-600 установки дозаторов.

Полный типоразмерный ряд УКТП «Пурга» включает установки, имеющие производительность по пене от 20 м 3 /мин до 240 м 3 /мин. На рис. 3.11 внизу показана УКТП «Пурга-120», которая изготавливается в стационарном и мобильном вариантах с ручным или дистанционным управлением. Эта установка способна подать 216 кубометров пены в минуту на расстояние до 100 метров.

Тема № 9


Похожая информация.


Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 3.23).

ПЕННЫЕ ПОЖАРНЫЕ СТВОЛЫ

Для получения пены низкой кратности

Для получения пены средней кратности

Комбинированные для получения пены низкой и средней кратности

Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная6 , вакуумная3 и выходная4 . На вакуумной камере расположен ниппель2 диаметром 16 мм для присоединения шланга1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола1 , создает в конусной камере3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель

Размерность

Тип ствола

Производительность по пене

Рабочее давление перед стволом

Расход воды

Кратность пены на выходе из ствола

(не менее)

(не менее)

Дальность подачи пены

Соединительная головка

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Показатель

Размерность

Генератор пены средней кратности

Производительность по пене

Кратность пены

Давление перед распылителем

Расход 4 – 6 % раствора пенообразователя

Дальность подачи пены

Соединительная головка

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток2 , распылителя центробежного3 , насадка4 и коллектора5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель3 и муфтовая головка ГМ-70. Пакет сеток2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Вкачестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Таблица 3.12

Показатель

Размер- ность

Установка комбинированного тушения пожара (УКТП) типа

«Пурга-5»

«Пурга-7»

«Пурга-10»

«Пурга-10.20.30»

«Пурга-30.60.90»

«Пурга-200–240»

Производительность по раствору пенообразователя

Производительность по пене средней кратности

Дальность подачи струи пены средней кратности

Рабочее давление перед стволом

Кратность пены

пенообразователя

Воздушно-механическая пена образуется в ре­зультате интенсивного механического перемешивания водного раствора пенообразователя с воздухом.

Для получения пены применяются пенообразователи ПО-1 и ПО-6.

Пенообразователь ПО-l представляет собой нейтрализованный керосиновый контакт, содержащий не менее 45% сульфокислот. Для получения необходимой кратности и стойкости пены в него добавляют 4,5% клея и 10% спирта или этиленгликоля.

Пенообразователь ПО-6 является продуктом щелочного гид­ролиза технической крови животных. Для придания устойчи­вости пены в него добавляют 1% сернокислого закисного же­леза. Чтобы предотвратить загнивание пенообразователя при длительном хранении, в него добавляют 4% фтористого натрия.

Пенообразователи должны удовлетворять требованиям ГОСТ 6948-54 и ГОСТ 9603-61.

Воздушно-механическая пена состоит из пузырьков, оболочка которых образована из раствора пенообразователя. В пузырьках содержится (в зависимости от пенообразователя) воздуха до 90%, воды 9,5% и пенообразователя до 0,5%. Удельный вес пены от 0,11 до 0,17.

Получается воздушно-механическая пена с помощью специальных аппаратов (смесителей и воздушно-пенных стволов). Стойкость пены на основе пенообразователя ПО-1 составляет 30 мин, а на основе пенообразователя ПО-6- не менее 60 мин.

ВНИИПО разработана рецептура пенообразователя ПО-8 для получения воздушно-механической пены повышенной стой­кости, которая используется при тушении нефтепродуктов" и полярных жидкостей (спирта, ацетона и др.).

Воздушно-механическую пену по кратности выхода подразделяют на пену нормальной и высокой кратности.

Пена нормальной кратности считается в том случае, когда из 1 л пенообразователя ПО-1 и 25 л воды образуется от 200 до 300 л пены, из 1 л пенообразователя ПО-6 и 25 л воды - от 125 до 175 л.

Пена из пенообразователя ПО-6 более стойка, чем из пенообразователя ПО-1. Для получения пены нормальной крат­ности используют водные растворы пенообразователей ПО-1 (3-4% по объему) и ПО-6 (4-6% по объему).

Пенообразователь ПО-1 считается годным, если кратность выхода пены не менее 10, стойкость ее не менее 30 мин, а пено­образователь ПО-6,- если кратность выхода пены не менее 5, стойкость ее не менее 60 мин.

Пена нормальной кратности хорошо удерживается на вертикальных поверхностях, поэтому она может применяться для защиты материалов и конструкций от загорания при воздей­ствии лучистой теплоты.

Воздушно-механическую пену нормальной кратности целесообразно применять для тушения нефтепродуктов с темпе­ратурой вспышки 45° С и выше, находящихся в емкостях, и нефтепродуктов с температурой вспышки 45° С и ниже (за ис­ключением авиабензина), разлитых тонким слоем по твердому покрову или на поверхности воды.

Ее можно использовать также для тушения нефтепродуктов с температурой вспышки 45° С и ниже (за исключением бензина) в емкостях. Но при этом надо помнить, что для ту­шения нефтепродуктов с температурой вспышки 28° С и ниже на площади не более 100 м 2 можно применять воздушно-меха­ническую пену нормальной кратности на основе пенообразова­теля ПО-1, а на площади не более 400-500 м 2 - на основе пе­нообразователя ПО-6. Расстояние от верхней кромки борта ем­кости до зеркала жидкости должно быть не более 2 м. Это ус­ловие следует соблюдать также и при тушении нефтепродуктов с температурой вспышки от 28 до 45° С.

Пенообразователи неэффективны при тушении пожаров полярных жидкостей (спирта, эфира, ацетона).

Для тушения нефтепродуктов (бензина, керосина, сырой нефти, мазута) наряду с пенообразователем ПО-1 используют смачиватель НБ.

ВНИИПО разработан способ тушения нефтепродуктов в емкостях путем подачи воздушно-механической пены через слой горючего. В данном случае пожар можно тушить при любом уровне горючего в емкостях.

Пена высокой кратности на основе пенообразователей ПО-1 или ПО-6 вырабатывается „специальным генератором, работающим по принципу усиленного подсоса воздуха. Она может применяться для локализации пожаров твердых веществ, пла­менного горения в помещениях. Высокую огнегасительную эф­фективность пена дает при тушении нефтепродуктов.

При тушении ею пламенного горения в помещениях происходит вытеснение дыма и продуктов сгорания, локализация очагов горения, создаются благоприятные условия для полного прекращения горения.

По мере заполнения помещений пеной высокой кратности температура в них быстро снижается в результате вытеснения горячих газов, прекращения горения и частичного охлаждения конструкций. Температура в горящем помещении, как свидетельствует практика, сразу же после подачи в него пены мо­жет снизиться с 1000° С и более до 65-50° С.

После заполнения помещения пеной температура в нем мо­жет вновь повыситься, так как нагретые конструкции перекры­тий из-за кратковременного действия пены не успевают ох­лаждаться.

Пеной высокой кратности можно тушить лишь пламя вслед­ствие наличия в ней большого количества воздуха и ограни­ченного времени ее подачи. Очаги тления твердых веществ при этом остаются непогашенными.

Под воздействием теплоты, выделяющейся при тлении, пена быстро разрушается.

Полная ликвидация очагов тления зависит от интенсивности и времени подачи пены и от того, насколько быстро она прони­кает к местам горения.

Практически пена высокой кратности нетеплопроводна. Ко­лебания температуры окружающей среды от -30 до +30° С существенного влияния на качество пены не оказывают. При низких температурах (ниже -15° С) стойкость пены несколько снижается, хотя на поверхности ее образуется устойчивая кор­ка. Высокая температура ускоряет разрушение пены.

Пена не оказывает вредного действия на большинство материалов и оборудование, не создает дополнительной нагрузки на конструкции в связи с незначительным объемным весом ее.

Пенообразующий раствор является хорошим смачивателем и поэтому свободно проникает внутрь материалов, в том числе волокнистых.

При пользовании воздушно-механической пеной значитель­но облегчается труд пожарных во время тушения пожара. По­этому ее широко применяют при тушении пожаров, она явля­ется основным средством пожаротушения.

При тушении нефтепродуктов необходимо применять расчетное количество как химической, так и воздушномеханиче­ской пены. Указания по их расчету излагаются в приложении 4 «Правил пожарной безопасности на речном транспорте Ми­нистерства речного флота РСФСР».

Углекислота (техническое название двуокиси углерода) С0 2 - бесцветный газ с едва ощутимым запахом, не горит и не поддерживает горения, не проводит ток. Огнегасительная концентрация паров углекислоты в воздухе должна быть 22,4% (по объему). При 0°С и давлении 36 кгс/см 2 легко сжижается, пере­ходя из газообразного состояния в жидкое.

Теплота испарения жидкой углекислоты 47,7 кал/кг. При бы­стром испарении жидкой углекислоты образуется твердая (сне­гообразная) углекислота. Удельный вес такой углекислоты при температуре -79° С равен 1,53.

Углекислота или углекислый снег, направленные в зону пожара, снижают концентрацию кислорода в ней до такой величи­ны, при которой невозможно горение, а также охлаждают горя­щее вещество и окружающую среду, в результате чего горение прекращается.

Углекислота применяется для тушения пожаров в закрытых помещениях (в условиях ограниченного воздухообмена) и на сравнительно небольшой площади непосредственно на /воздухе. Она используется для тушения пожаров электроустановок под напряжением.

При тушении пожаров в закрытых помещениях расходуется 0,495 кг/м 3 углекислоты, а в наиболее пожароопасных помещениях -0,594 /кг/м 3 .

Пламенное горение в грузовом трюме судна при применении углекислоты прекращается в тех случаях, когда процентное со­держание кислорода в нем снижается до 14%. Тление же при этом продолжается. Для его прекращения содержание кислоро­да в трюме необходимо довести до 5%. Углекислоту надо пода­вать в трюм до тех пор, пока полностью не прекратится тление, а оно может продолжаться от нескольких часов до одних-двух суток.

Углекислота как самостоятельное огнегасительное средство" в стационарных противопожарных установках на речном тран­спорте применяется редко. Она заменяется более эффективными средствами - галоидуглеводородами: бромистым этилом, броми­стым метиленом, тетрафтордибромэтаном, которые входят в со­ставы таких огнегасительных смесей, как «3,5», СЖБ и однокомпонентный фреон-114В2.

Виды воздушно механических пен

Воздушно-механическая пена образуется в результате интенсивного механического перемешивания водного раствора пенообразователя с воздухом.

Для получения пены применяются пенообразователи ПО-1 и ПО-6.

Пенообразователь ПО-l представляет собой нейтрализованный керосиновый контакт, содержащий не менее 45% суль- фокислот. Для получения необходимой кратности и стойкости пены в него добавляют 4,5% клея и 10% спирта или этилен- гликоля.

Пенообразователь ПО-6 является продуктом щелочного гидролиза технической крови животных. Для придания устойчивости пены в него добавляют 1% сернокислого закисного железа. Чтобы предотвратить загнивание пенообразователя при длительном хранении, в него добавляют 4% фтористого натрия.

Пенообразователи должны удовлетворять требованиям ГОСТ 6948--54 и ГОСТ 9603--61.

Воздушно-механическая пена состоит из пузырьков, оболочка которых образована из раствора пенообразователя. В пузырьках содержится (в зависимости от пенообразователя) воздуха до 90%, воды 9,5% и пенообразователя до 0,5%. Удельный вес пены от 0,11 до 0,17.

Получается воздушно-механическая пена с помощью специальных аппаратов (смесителей и воздушно-пенных стволов). Стойкость пены на основе пенообразователя ПО-1 составляет 30 мин, а на основе пенообразователя ПО-6-- не менее 60 мин. ВНИИПО разработана рецептура пенообразователя ПО-8 для получения воздушно-механической пены повышенной стойкости, которая используется при тушении нефтепродуктов" и полярных жидкостей (спирта, ацетона и др.).

Воздушно-механическую пену по кратности выхода подразделяют на пену нормальной и высокой кратности.

Пена нормальной кратности считается в том случае, когда из 1 л пенообразователя ПО-1 и 25 л воды образуется от 200 до 300 л пены, из 1 л пенообразователя ПО-6 и 25 л воды -- от 125 до 175 л.

Пена из пенообразователя ПО-6 более стойка, чем из пенообразователя ПО-1. Для получения пены нормальной кратности используют водные растворы пенообразователей ПО-1 (3--4% по объему) и ПО-6 (4--6% по объему).

Пенообразователь ПО-1 считается годным, если кратность выхода пены не менее 10, стойкость ее не менее 30 мин, а пенообразователь ПО-6,-- если кратность выхода пены не менее 5, стойкость ее не менее 60 мин.

Пена нормальной кратности хорошо удерживается на вертикальных поверхностях, поэтому она может применяться для защиты материалов и конструкций от загорания при воздействии лучистой теплоты.

Воздушно-механическую пену нормальной кратности целесообразно применять для тушения нефтепродуктов с температурой вспышки 45° С и выше, находящихся в емкостях, и нефтепродуктов с температурой вспышки 45° С и ниже (за исключением авиабензина), разлитых тонким слоем по твердому покрову или на поверхности воды.

Ее можно использовать также для тушения нефтепродуктов с температурой вспышки 45° С и ниже (за исключением бензина) в емкостях. Но при этом надо помнить, что для тушения нефтепродуктов с температурой вспышки 28° С и ниже на площади не более 100 м2 можно применять воздушно-механическую пену нормальной кратности на основе пенообразователя ПО-1, а на площади не более 400--500 м2 -- на основе пенообразователя ПО-6. Расстояние от верхней кромки борта емкости до зеркала жидкости должно быть не более 2 м. Это условие следует соблюдать также и при тушении нефтепродуктов с температурой вспышки от 28 до 45° С.

Пенообразователи неэффективны при тушении пожаров полярных жидкостей (спирта, эфира, ацетона).

Для тушения нефтепродуктов (бензина, керосина, сырой нефти, мазута) наряду с пенообразователем ПО-1 используют смачиватель НБ.

ВНИИПО разработан способ тушения нефтепродуктов в емкостях путем подачи воздушно-механической пены через слой горючего. В данном случае пожар можно тушить при любом уровне горючего в емкостях.

Пена высокой кратности на основе пенообразователей ПО-1 или ПО-6 вырабатывается, специальным генератором, работающим по принципу усиленного подсоса воздуха. Она может применяться для локализации пожаров твердых веществ, пламенного горения в помещениях. Высокую огнегасительную эффективность пена дает при тушении нефтепродуктов.

При тушении ею пламенного горения в помещениях происходит вытеснение дыма и продуктов сгорания, локализация очагов горения, создаются благоприятные условия для полного прекращения горения.

По мере заполнения помещений пеной высокой кратности температура в них быстро снижается в результате вытеснения горячих газов, прекращения горения и частичного охлаждения конструкций. Температура в горящем помещении, как свидетельствует практика, сразу же после подачи в него пены может снизиться с 1000° С и более до 65--50° С.

После заполнения помещения пеной температура в нем может вновь повыситься, так как нагретые конструкции перекрытий из-за кратковременного действия пены не успевают охлаждаться.

Пеной высокой кратности можно тушить лишь пламя вследствие наличия в ней большого количества воздуха и ограниченного времени ее подачи. Очаги тления твердых веществ при этом остаются непогашенными.

Под воздействием теплоты, выделяющейся при тлении, пена быстро разрушается.

Полная ликвидация очагов тления зависит от интенсивности и времени подачи пены и от того, насколько быстро она проникает к местам горения.

Практически пена высокой кратности нетеплопроводна. Колебания температуры окружающей среды от --30 до +30° С существенного влияния на качество пены не оказывают. При низких температурах (ниже --15° С) стойкость пены несколько снижается, хотя на поверхности ее образуется устойчивая корка. Высокая температура ускоряет разрушение пены.

Пена не оказывает вредного действия на большинство материалов и оборудование, не создает дополнительной нагрузки на конструкции в связи с незначительным объемным весом ее.

Пенообразующий раствор является хорошим смачивателем и поэтому свободно проникает внутрь материалов, в том числе волокнистых.

При пользовании воздушно-механической пеной значительно облегчается труд пожарных во время тушения пожара. Поэтому ее широко применяют при тушении пожаров, она является основным средством пожаротушения.

При тушении нефтепродуктов необходимо применять расчетное количество как химической, так и воздушно-механической пены. Указания по их расчету излагаются в приложении 4 «Правил пожарной безопасности на речном транспорте Министерства речного флота РСФСР».

Углекислота (техническое название двуокиси углерода) С02 -- бесцветный газ с едва ощутимым запахом, не горит и не поддерживает горения, не проводит ток. Огнегасительная концентрация паров углекислоты в воздухе должна быть 22,4% (по объему). При 0°С и давлении 36 кгс/см2 легко сжижается, переходя из газообразного состояния в жидкое.

Теплота испарения жидкой углекислоты 47,7 кал/кг. При быстром испарении жидкой углекислоты образуется твердая (снегообразная) углекислота. Удельный вес такой углекислоты при температуре --79° С равен 1,53. Углекислота или углекислый снег, направленные в зону пожара, снижают концентрацию кислорода в ней до такой величины, при которой невозможно горение, а также охлаждают горящее вещество и окружающую среду, в результате чего горение прекращается.

Углекислота применяется для тушения пожаров в закрытых помещениях (в условиях ограниченного воздухообмена) и на сравнительно небольшой площади непосредственно на /воздухе. Она используется для тушения пожаров электроустановок под напряжением.

При тушении пожаров в закрытых помещениях расходуется 0,495 кг/м3 углекислоты, а в наиболее пожароопасных помещениях --0,594 /кг/м3.

Пламенное горение в грузовом трюме судна при применении углекислоты прекращается в тех случаях, когда процентное содержание кислорода в нем снижается до 14%. Тление же при этом продолжается. Для его прекращения содержание кислорода в трюме необходимо довести до 5%. Углекислоту надо подавать в трюм до тех пор, пока полностью не прекратится тление, а оно может продолжаться от нескольких часов до одних-двух суток.

Углекислота как самостоятельное огнегасительное средство в стационарных противопожарных установках на речном транспорте применяется редко. Она заменяется более эффективными средствами -- галоидуглеводородами: бромистым этилом, бромистым метиленом, тетрафтордибромэтаном, которые входят в составы таких огнегасительных смесей, как «3,5», СЖБ и однокомпонентный фреон-114В2.

пожар тушение пена огнегасительный

Анализ условий труда на рабочих местах в производственных помещениях

В зависимости от возможности защиты человека в условиях взаимодействия его с потенциально опасными объектами можно рассматривать два основных метода: 1. обеспечение недоступности к опасно действующим частям машин и оборудования; 2...

Безопасность жизнедеятельности на производстве

Источники света, применяемые для искусственного освещения, делят на две группы - газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Безопасность производственной деятельности и средства индивидуальной защиты

Опасные механические факторы: механические движения и действия технологического оборудования, инструмента, механизмов и машин. К средствам индивидуальной защиты от механических воздействий относятся рабочая одежда, очки, рукавицы...

Опасные и вредные производственные факторы

К средствам защиты от механического травмирования относятся предохранительные тормозные, оградительные устройства, средства автоматического контроля и сигнализации, знаки безопасности и т.п...

Организация аварийно–спасательных и восстановительных работ в Республике Коми

Аварийно-спасательные работы при чрезвычайных ситуациях межмуниципального и регионального характера (далее - аварийно-спасательные работы) на территории Республики Коми, подвергшейся воздействию аварий, катастроф или иных стихийных бедствий...

Организация обучения безопасности труда

Воздушно-механическая пена образуется при механическом смешивание воздуха, воды и поверхностно-активного вещества (пенообразователей ПО-1, ПО-6, ПО-11 и др). Воздушно-механическая пена может быть обычной...

Организация условий труда на рабочем месте

Производственное освещение бывает: Естественным: обусловлено прямыми солнечными лучами и рассеянным светом небосвода. Меняется в зависимости от географической широты, времени суток, степени облачности, прозрачности атмосферы...

Первичные средства пожаротушения

Огнетушители воздушно-пенные используются при тушении пожаров классов А и В (дерево, краски и ГСМ) не допускается применять для тушения электроустановок под напряжением, а также щелочных металлов...

Пожароопасные объекты

Пожары по своим масштабам и интенсивности подразделяются на виды. Отдельный пожар - пожар, возникший в отдельном здании или сооружении...

Приоритетные критерии качества жизни среди студентов Темниковского медицинского колледжа

Здоровье - главный показатель качества жизни. Известно, что состояние здоровья человека в нынешних условиях существенно зависит от условий, в которых он находится (защищенность пребывания в социуме, санитарно-гигиеническое состояние помещений...

Сигналы оповещения Способы подачи сигнала Цель подачи сигнала Дейсвия населения при получении сигнала Внимание ВСЕМ! Звуковой сигнал с помощью сирен, гудков и других звуковых средств оповещения...

Сигнал "Воздушная тревога" и действия населения при его объявлении

Раны делятся на: · поверхностные -- неглубокие, когда повреждается только одна кожа · глубокие -- захватывающие подкожные ткани, мышцы, кости В зависимости от величины раны делятся на малые, средние и обширные...

Системы контроля требований безопасности и экологичности

В Российской Федерации существует несколько видов мониторинга, которые контролируют исполнение и наличие самих требований безопасности и экологичности...

Служба безопасности предприятия

Вводный инструктаж проводится со всеми вновь принимаемыми на работу независимо от их образования, стажа работы по данной профессии или должности, а также с командированными работниками, учащимися, студентами...

Улучшение условий труда слесаря по сборке металлоконструкций

В РММ происходят следующие технологические процессы: - диагностические работы; - ремонт деталей (шлифование, сверление...