Разрешение АЦП - минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП - связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных АЦП измеряется в битах , в троичных АЦП измеряется в тритах . Например, двоичный 8-разрядный АЦП способен выдать 256 дискретных значений (0…255), поскольку 2 8 = 256 {\displaystyle 2^{8}=256} , троичный 8-разрядный АЦП способен выдать 6561 дискретное значение, поскольку 3 8 = 6561 {\displaystyle 3^{8}=6561} .

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

  • Пример 1
    • Диапазон входных значений = от 0 до 10 вольт
    • Разрядность двоичного АЦП 12 бит: 2 12 = 4096 уровней квантования
    • Разрешение двоичного АЦП по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ
    • Разрядность троичного АЦП 12 трит: 3 12 = 531 441 уровень квантования
    • Разрешение троичного АЦП по напряжению: (10-0)/531441 = 0,0188 мВ = 18,8 мкВ
  • Пример 2
    • Диапазон входных значений = от −10 до +10 вольт
    • Разрядность двоичного АЦП 14 бит: 2 14 = 16384 уровня квантования
    • Разрешение двоичного АЦП по напряжению: (10-(-10))/16384 = 20/16384 = 0,00122 вольт = 1,22 мВ
    • Разрядность троичного АЦП 14 трит: 3 14 = 4 782 969 уровней квантования
    • Разрешение троичного АЦП по напряжению: (10-(-10))/4782969 = 0,00418 мВ = 4,18 мкВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью (англ. effective number of bits, ENOB ), которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение сигнал/шум входного сигнала должно быть примерно 6 дБ на каждый бит разрядности (6 дБ соответствует двукратному изменению уровня сигнала).

Типы преобразования

По способу применяемых алгоритмов АЦП делят на:

  • Последовательного приближения
  • Последовательные с сигма-дельта-модуляцией
  • Параллельные одноступенчатые
  • Параллельные двух- и более ступенчатые (конвейерные)

АЦП первых двух типов подразумевают обязательное применение в своем составе устройства выборки и хранения (УВХ). Это устройство служит для запоминания аналогового значения сигнала на время, необходимое для выполнения преобразования. Без него результат преобразования АЦП последовательного типа будет недостоверным. Выпускаются интегральные АЦП последовательного приближения, как содержащие в своем составе УВХ, так и требующие внешнее УВХ [ ] .

Линейные АЦП

Большинство АЦП считаются линейными, хотя аналого-цифровое преобразование, по сути, является нелинейным процессом (поскольку операция отображения непрерывного пространства в дискретное - операция нелинейная).

Термин линейный применительно к АЦП означает, что диапазон входных значений, отображаемый на выходное цифровое значение, связан по линейному закону с этим выходным значением, то есть выходное значение k достигается при диапазоне входных значений от

m (k + b ) m (k + 1 + b ),

где m и b - некоторые константы. Константа b , как правило, имеет значение 0 или −0.5. Если b = 0, АЦП называют квантователь с ненулевой ступенью (mid-rise ), если же b = −0,5, то АЦП называют квантователь с нулём в центре шага квантования (mid-tread ).

Нелинейные АЦП

Важным параметром, описывающим нелинейность, является интегральная нелинейность (INL) и дифференциальная нелинейность (DNL).

Апертурная погрешность (джиттер)

Пусть мы оцифровываем синусоидальный сигнал x (t) = A sin ⁡ 2 π f 0 t {\displaystyle x(t)=A\sin 2\pi f_{0}t} . В идеальном случае отсчёты берутся через равные промежутки времени. Однако в реальности время момента взятия отсчёта подвержено флуктуациям из-за дрожания фронта синхросигнала (clock jitter ). Полагая, что неопределённость момента времени взятия отсчёта порядка Δ t {\displaystyle \Delta t} , получаем, что ошибка, обусловленная этим явлением, может быть оценена как

E a p ≤ | x ′ (t) Δ t | ≤ 2 A π f 0 Δ t {\displaystyle E_{ap}\leq |x"(t)\Delta t|\leq 2A\pi f_{0}\Delta t} .

Ошибка относительно невелика на низких частотах, однако на больших частотах она может существенно возрасти.

Эффект апертурной погрешности может быть проигнорирован, если её величина сравнительно невелика по сравнению с ошибкой квантования. Таким образом, можно установить следующие требования к дрожанию фронта сигнала синхронизации:

Δ t < 1 2 q π f 0 {\displaystyle \Delta t<{\frac {1}{2^{q}\pi f_{0}}}} ,

где q {\displaystyle q} - разрядность АЦП.

Разрядность АЦП Максимальная частота входного сигнала
44,1 кГц 192 кГц 1 МГц 10 МГц 100 МГц
8 28,2 нс 6,48 нс 1,24 нс 124 пс 12,4 пс
10 7,05 нс 1,62 нс 311 пс 31,1 пс 3,11 пс
12 1,76 нс 405 пс 77,7 пс 7,77 пс 777 фс
14 441 пс 101 пс 19,4 пс 1,94 пс 194 фс
16 110 пс 25,3 пс 4,86 пс 486 фс 48,6 фс
18 27,5 пс 6,32 пс 1,21 пс 121 фс 12,1 фс
24 430 фс 98,8 фс 19,0 фс 1,9 фс 190 ас

Из этой таблицы можно сделать вывод о целесообразности применения АЦП определённой разрядности с учётом ограничений, накладываемых дрожанием фронта синхронизации (clock jitter ). Например, бессмысленно использовать прецизионный 24-битный АЦП для записи звука, если система распределения синхросигнала не в состоянии обеспечить ультрамалой неопределённости.

Вообще качество тактового сигнала чрезвычайно важно не только по этой причине. Например, из описания микросхемы AD9218 (Analog Devices):

Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer. Any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-to-digital output.

То есть любой высокоскоростной АЦП крайне чувствителен к качеству оцифровывающей тактовой частоты, подаваемой пользователем. Схема выборки и хранения , по сути, является смесителем (перемножителем). Любой шум, искажения, или дрожание фазы тактовой частоты смешиваются с полезным сигналом и поступают на цифровой выход.

Частота дискретизации

Аналоговый сигнал является непрерывной функцией времени , в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T - период дискретизации), и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции . Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова - Шеннона точное восстановление возможно, только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным, по крайней мере, от начала до конца процесса преобразования (этот интервал времени называют время преобразования ). Эта задача решается путём использования специальной схемы на входе АЦП - устройства выборки-хранения (УВХ). УВХ, как правило, хранит входное напряжение на конденсаторе , который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании - хранение. Многие АЦП, выполненные в виде интегральных микросхем , содержат встроенное УВХ.

Наложение спектров (алиасинг)

Все АЦП работают путём выборки входных значений через фиксированные интервалы времени. Следовательно, выходные значения являются неполной картиной того, что подаётся на вход. Глядя на выходные значения, нет никакой возможности установить, как вёл себя входной сигнал между выборками. Если известно, что входной сигнал меняется достаточно медленно относительно частоты дискретизации, то можно предположить, что промежуточные значения между выборками находятся где-то между значениями этих выборок. Если же входной сигнал меняется быстро, то никаких предположений о промежуточных значениях входного сигнала сделать нельзя, а следовательно, невозможно однозначно восстановить форму исходного сигнала.

Если последовательность цифровых значений, выдаваемая АЦП, где-либо преобразуется обратно в аналоговую форму цифро-аналоговым преобразователем , желательно, чтобы полученный аналоговый сигнал был максимально точной копией исходного сигнала. Если входной сигнал меняется быстрее, чем делаются его отсчёты, то точное восстановление сигнала невозможно, и на выходе ЦАП будет присутствовать ложный сигнал. Ложные частотные компоненты сигнала (отсутствующие в спектре исходного сигнала) получили название alias (ложная частота, побочная низкочастотная составляющая). Частота ложных компонент зависит от разницы между частотой сигнала и частотой дискретизации. Например, синусоидальный сигнал с частотой 2 кГц, дискретизованный с частотой 1.5 кГц, был бы воспроизведён как синусоида с частотой 500 Гц. Эта проблема получила название наложение частот (aliasing ).

Для предотвращения наложения спектров сигнал, подаваемый на вход АЦП, должен быть пропущен через фильтр нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации. Этот фильтр получил название anti-aliasing (антиалиасинговый) фильтр, его применение чрезвычайно важно при построении реальных АЦП.

Вообще, применение аналогового входного фильтра интересно не только по этой причине. Казалось бы, цифровой фильтр, который обычно применяется после оцифровки, имеет несравненно лучшие параметры. Но, если в сигнале присутствуют компоненты, значительно более мощные, чем полезный сигнал, и достаточно далеко отстоящие от него по частоте, чтобы быть эффективно подавленными аналоговым фильтром, такое решение позволяет сохранить динамический диапазон АЦП: если помеха на 10 дБ сильнее сигнала, на неё впустую будет тратиться, в среднем, три бита разрядности.

Хотя наложение спектров в большинстве случаев является нежелательным эффектом, его можно использовать во благо. Например, благодаря этому эффекту можно обойтись без преобразования частоты вниз при оцифровке узкополосного высокочастотного сигнала (смотрите смеситель). Для этого, однако, входные аналоговые каскады АЦП должны иметь значительно более высокие параметры, чем это требуется для стандартного использования АЦП на основной (видео или низшей) гармонике. Также для этого необходимо обеспечить эффективную фильтрацию внеполосных частот до АЦП, так как после оцифровки нет никакой возможности идентифицировать и/или отфильтровать большинство из них.

Подмешивание псевдослучайного сигнала (dither)

Некоторые характеристики АЦП могут быть улучшены путём использования методики подмешивания псевдослучайного сигнала (англ. dither ). Она заключается в добавлении к входному аналоговому сигналу случайного шума (белый шум) небольшой амплитуды. Амплитуда шума, как правило, выбирается на уровне половины МЗР. Эффект от такого добавления заключается в том, что состояние МЗР случайным образом переходит между состояниями 0 и 1 при очень малом входном сигнале (без добавления шума МЗР был бы в состоянии 0 или 1 долговременно). Для сигнала с подмешанным шумом вместо простого округления сигнала до ближайшего разряда происходит случайное округление вверх или вниз, причём среднее время, в течение которого сигнал округлён к тому или иному уровню, зависит от того, насколько сигнал близок к этому уровню. Таким образом, оцифрованный сигнал содержит информацию об амплитуде сигнала с разрешающей способностью лучше, чем МЗР, то есть происходит увеличение эффективной разрядности АЦП. Негативной стороной методики является увеличение шума в выходном сигнале. Фактически ошибка квантования размазывается по нескольким соседним отсчётам. Такой подход является более желательным, чем простое округление до ближайшего дискретного уровня. В результате использования методики подмешивания псевдослучайного сигнала мы имеем более точное воспроизведение сигнала во времени. Малые изменения сигнала могут быть восстановлены из псевдослучайных скачков МЗР путём фильтрации. Кроме того, если шум детерминирован (амплитуда добавляемого шума точно известна в любой момент времени), то его можно вычесть из оцифрованного сигнала, предварительно увеличив его разрядность, тем самым почти полностью избавиться от добавленного шума.

Звуковые сигналы очень малых амплитуд, оцифрованные без псевдослучайного сигнала, воспринимаются на слух очень искажёнными и неприятными. При подмешивании псевдослучайного сигнала истинный уровень сигнала представлен средним значением нескольких последовательных отсчётов.

Типы АЦП

Ниже перечислены основные способы построения электронных АЦП:

  • Параллельные АЦП прямого преобразования , полностью параллельные АЦП, содержат по одному компаратору на каждый дискретный уровень входного сигнала. В любой момент времени только компараторы, соответствующие уровням ниже уровня входного сигнала, выдают на своём выходе сигнал превышения. Сигналы со всех компараторов поступают либо прямо в параллельный регистр, тогда обработка кода осуществляется программно, либо на аппаратный логический шифратор , аппаратно генерирующий нужный цифровой код в зависимости от кода на входе шифратора. Данные с шифратора фиксируются в параллельном регистре. Частота дискретизации параллельных АЦП, в общем случае, зависит от аппаратных характеристик аналоговых и логических элементов, а также от требуемой частоты выборки значений. Параллельные АЦП прямого преобразования - самые быстрые, но обычно имеют разрешение не более 8 бит, так как влекут за собой большие аппаратные затраты ( 2 n − 1 = 2 8 − 1 = 255 {\displaystyle 2^{n}-1=2^{8}-1=255} компараторов). АЦП этого типа имеют очень большой размер кристалла микросхемы , высокую входную ёмкость , и могут выдавать кратковременные ошибки на выходе. Часто используются для видео или других высокочастотных сигналов, а также широко применяются в промышленности для отслеживания быстро изменяющихся процессов в реальном времени.
  • Параллельно-последовательные АЦП прямого преобразования , частично последовательные АЦП, сохраняя высокое быстродействие позволяют значительно уменьшить количество компараторов (до k ⋅ (2 n / k − 1) {\displaystyle k\cdot (2^{n/k}-1)} , где n - число битов выходного кода, а k - число параллельных АЦП прямого преобразования), требующееся для преобразования аналогового сигнала в цифровой (при 8-ми битах и 2-х АЦП требуется 30 компараторов). Используют два или более (k) шага-поддиапазона. Содержат в своем составе k параллельных АЦП прямого преобразования. Второй, третий и т. д. АЦП служат для уменьшения ошибки квантования первого АЦП путём оцифровки этой ошибки. На первом шаге производится грубое преобразование (с низким разрешением). Далее определяется разница между входным сигналом и аналоговым сигналом, соответствующим результату грубого преобразования (со вспомогательного ЦАП, на который подаётся грубый код). На втором шаге найденная разница подвергается преобразованию, и полученный код объединяется с грубым кодом для получения полного выгодного цифрового значения. АЦП этого типа медленнее параллельных АЦП прямого преобразования, имеют высокое разрешение и небольшой размер корпуса. Для увеличения скорости выходного оцифрованного потока данных в параллельно-последовательных АЦП прямого преобразования применяется конвейерная работа параллельных АЦП.
  • Конвейерная работа АЦП , применяется в параллельно-последовательных АЦП прямого преобразования, в отличие от обычного режима работы параллельно-последовательных АЦП прямого преобразования, в котором данные передаются после полного преобразования, при конвейерной работе данные частичных преобразований передаются по мере готовности до окончания полного преобразования.
  • Последовательные АЦП прямого преобразования , полностью последовательные АЦП (k=n), медленнее параллельных АЦП прямого преобразования и немного медленнее параллельно-последовательных АЦП прямого преобразования, но ещё больше (до n ⋅ (2 n / n − 1) = n ⋅ (2 1 − 1) = n {\displaystyle n\cdot (2^{n/n}-1)=n\cdot (2^{1}-1)=n} , где n - число битов выходного кода, а k - число параллельных АЦП прямого преобразования) уменьшают количество компараторов (при 8-ми битах требуется 8 компараторов). Троичные АЦП этого вида приблизительно в 1,5 раза быстрее соизмеримых по числу уровней и аппаратным затратам двоичных АЦП этого же вида .
  • или АЦП с поразрядным уравновешиванием содержит компаратор, вспомогательный ЦАП и регистр последовательного приближения. АЦП преобразует аналоговый сигнал в цифровой за N шагов, где N - разрядность АЦП. На каждом шаге определяется по одному биту искомого цифрового значения, начиная от СЗР и заканчивая МЗР. Последовательность действий по определению очередного бита заключается в следующем. На вспомогательном ЦАП выставляется аналоговое значение, образованное из битов, уже определённых на предыдущих шагах; бит, который должен быть определён на этом шаге, выставляется в 1, более младшие биты установлены в 0. Полученное на вспомогательном ЦАП значение сравнивается с входным аналоговым значением. Если значение входного сигнала больше значения на вспомогательном ЦАП, то определяемый бит получает значение 1, в противном случае 0. Таким образом, определение итогового цифрового значения напоминает двоичный поиск . АЦП этого типа обладают одновременно высокой скоростью и хорошим разрешением. Однако при отсутствии устройства выборки хранения погрешность будет значительно больше (представьте, что после оцифровки самого большого разряда сигнал начал меняться).
  • (англ. delta-encoded ADC ) содержат реверсивный счётчик , код с которого поступает на вспомогательный ЦАП. Входной сигнал и сигнал со вспомогательного ЦАП сравниваются на компараторе. Благодаря отрицательной обратной связи с компаратора на счётчик код на счётчике постоянно меняется так, чтобы сигнал со вспомогательного ЦАП как можно меньше отличался от входного сигнала. По прошествии некоторого времени разница сигналов становится меньше, чем МЗР, при этом код счётчика считывается как выходной цифровой сигнал АЦП. АЦП этого типа имеют очень большой диапазон входного сигнала и высокое разрешение, но время преобразования зависит от входного сигнала, хотя и ограничено сверху. В худшем случае время преобразования равно T max =(2 q)/f с , где q - разрядность АЦП, f с - частота тактового генератора счётчика. АЦП дифференциального кодирования обычно являются хорошим выбором для оцифровки сигналов реального мира, так как большинство сигналов в физических системах не склонны к скачкообразным изменениям. В некоторых АЦП применяется комбинированный подход: дифференциальное кодирование и последовательное приближение; это особенно хорошо работает в случаях, когда известно, что высокочастотные компоненты в сигнале относительно невелики.
  • АЦП сравнения с пилообразным сигналом (некоторые АЦП этого типа называют Интегрирующие АЦП , также к ним относятся АЦП последовательного счета) содержат генератор пилообразного напряжения (в АЦП последовательного счета генератор ступенчатого напряжения, состоящий из счетчика и ЦАП), компаратор и счётчик времени. Пилообразный сигнал линейно нарастает от нижнего до верхнего уровня, затем быстро спадает до нижнего уровня. В момент начала нарастания запускается счётчик времени. Когда пилообразный сигнал достигает уровня входного сигнала, компаратор срабатывает и останавливает счётчик; значение считывается со счётчика и подаётся на выход АЦП. Данный тип АЦП является наиболее простым по структуре и содержит минимальное число элементов. Вместе с тем простейшие АЦП этого типа обладают довольно низкой точностью и чувствительны к температуре и другим внешним параметрам. Для увеличения точности генератор пилообразного сигнала может быть построен на основе счётчика и вспомогательного ЦАП, однако такая структура не имеет никаких других преимуществ по сравнению с АЦП последовательного приближения и АЦП дифференциального кодирования .
  • АЦП с уравновешиванием заряда (к ним относятся АЦП с двухстадийным интегрированием, АЦП с многостадийным интегрированием и некоторые другие) содержат , компаратор , интегратор тока , тактовый генератор и счётчик импульсов. Преобразование происходит в два этапа (двухстадийное интегрирование ). На первом этапе значение входного напряжения преобразуется в ток (пропорциональный входному напряжению), который подаётся на интегратор тока, заряд которого изначально равен нулю. Этот процесс длится в течение времени TN , где T - период тактового генератора, N - константа (большое целое число, определяет время накопления заряда). По прошествии этого времени вход интегратора отключается от входа АЦП и подключается к генератору стабильного тока. Полярность генератора такова, что он уменьшает заряд, накопленный в интеграторе. Процесс разряда длится до тех пор, пока заряд в интеграторе не уменьшится до нуля. Время разряда измеряется путём счёта тактовых импульсов от момента начала разряда до достижения нулевого заряда на интеграторе. Посчитанное количество тактовых импульсов и будет выходным кодом АЦП. Можно показать, что количество импульсов n , посчитанное за время разряда, равно: n =U вх N (RI 0 ) −1 , где U вх - входное напряжение АЦП, N - число импульсов этапа накопления (определено выше), R - сопротивление резистора, преобразующего входное напряжение в ток, I 0 - значение тока от генератора стабильного тока, разряжающего интегратор на втором этапе. Таким образом, потенциально нестабильные параметры системы (прежде всего, ёмкость конденсатора интегратора) не входят в итоговое выражение. Это является следствием двухстадийности процесса: погрешности, введённые на первом и втором этапах, взаимно вычитаются. Не предъявляются жёсткие требования даже к долговременной стабильности тактового генератора и напряжению смещения компаратора: эти параметры должны быть стабильны лишь кратковременно, то есть в течение каждого преобразования (не более 2TN ). Фактически принцип двухстадийного интегрирования позволяет напрямую преобразовывать отношение двух аналоговых величин (входного и образцового тока) в отношение числовых кодов (n и N в терминах, определённых выше) практически без внесения дополнительных ошибок. Типичная разрядность АЦП этого типа составляет от 10 до 18 [ ] двоичных разрядов. Дополнительным достоинством является возможность построения преобразователей, нечувствительных к периодическим помехам (например, помеха от сетевого питания) благодаря точному интегрированию входного сигнала за фиксированный временной интервал. Недостатком данного типа АЦП является низкая скорость преобразования. АЦП с уравновешиванием заряда используются в измерительных приборах высокой точности.
  • АЦП с промежуточным преобразованием в частоту следования импульсов . Сигнал с датчика проходит через преобразователь уровня, а затем через преобразователь напряжение-частота . Таким образом на вход непосредственно логической схемы поступает сигнал, характеристикой которого является лишь частота импульсов. Логический счётчик принимает эти импульсы на вход в течение времени выборки, таким образом, выдавая к её окончанию кодовую комбинацию, численно равную количеству импульсов, пришедших на преобразователь за время выборки. Такие АЦП довольно медленны и не очень точны, но тем не менее очень просты в исполнении и поэтому имеют низкую стоимость.
  • Сигма-дельта -АЦП (называемые также дельта-сигма АЦП) производит аналого-цифровое преобразование с частотой дискретизации, во много раз превышающей требуемую, и путём фильтрации оставляет в сигнале только нужную спектральную полосу.

Неэлектронные АЦП обычно строятся на тех же принципах.

Оптические АЦП

Существуют оптические методы [ ] преобразования электрического сигнала в код. Они основаны на способности некоторых веществ изменять показатель преломления под действием электрического поля. При этом проходящий через вещество луч света изменяет свою скорость или угол отклонения на границе этого вещества в соответствии с изменением показателя преломления. Существует несколько способов регистрации этих изменений. Например, линейка фотоприемников регистрирует отклонение луча, переводя его в дискретный код. Различные интерференционные схемы с участием задержанного луча позволяют оценивать изменения сигнала или строить компараторы электрических величин.

Один из факторов, увеличивающих стоимость микросхем , - это количество выводов, поскольку они вынуждают делать корпус микросхемы больше, и каждый вывод должен быть присоединён к кристаллу. Для уменьшения количества выводов часто АЦП, работающие на низких частотах дискретизации, имеют последовательный интерфейс . Применение АЦП с последовательным интерфейсом зачастую позволяет увеличить плотность монтажа и создать плату с меньшей площадью.

Часто микросхемы АЦП имеют несколько аналоговых входов, подключённых внутри микросхемы к единственному АЦП через аналоговый мультиплексор . Различные модели АЦП могут включать в себя устройства выборки-хранения, инструментальные усилители или высоковольтный дифференциальный вход и другие подобные цепи.

Применение АЦП в звукозаписи

АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM -поток, который будет записан на информационный носитель.

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц . Многие люди, занятые в этой области, считают, что данный показатель избыточен и используется из чисто маркетинговых соображений (об этом свидетельствует теорема Котельникова - Шеннона). Можно сказать, что звуковой аналоговый сигнал не содержит столько информации, сколько может быть сохранено в цифровом сигнале при такой высокой частоте дискретизации, и зачастую для Hi-Fi -аудиотехники используется частота дискретизации 44,1 кГц (стандартная для компакт-дисков) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания.

Также избыточная полоса пропускания АЦП позволяет соответственно снизить амплитудные искажения, неизбежно возникающие из-за наличия схемы выборки и хранения. Такие искажения (нелинейность АЧХ) имеют вид sin(x)/x [ ] и относятся ко всей полосе пропускания, поэтому чем меньшая часть полосы пропускания (по частоте) используется (занята полезным сигналом), тем меньше данные искажения.

Аналого-цифровые преобразователи для звукозаписи имеют широкий диапазон цен - от 5 до 10 тыс. долл. и выше за двухканальный АЦП.

АЦП для звукозаписи, используемые в компьютерах, бывают внутренние и внешние. Также существует свободный программный комплекс PulseAudio для Linux, позволяющий использовать вспомогательные компьютеры как внешние ЦАП/АЦП для основного компьютера с гарантированным временем запаздывания.

.
  • АЦП последовательного приближения разрядностью 8-12 бит и сигма-дельта-АЦП разрядностью 16-24 бита встраиваются в однокристальные микроконтроллеры .
  • Очень быстрые АЦП необходимы в цифровых осциллографах (используются параллельные и конвейерные АЦП)
  • Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика (сигма-дельта-АЦП).
  • АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора .
  • Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в
  • Аналого-цифровые преобразователи предназначены для преобразования аналогового сигнала (обычно напряжения) в цифровую форму (последовательность цифровых значений напряжения, измеренных с равными промежутками времени). Одним из важнейших параметров аналого-цифровых преобразователей является разрядность его выходных данных. Именно этот параметр обеспечивает отношение сигнал/шум преобразования и в конечном итоге динамический диапазон цифрового сигнала. Разрядность АЦП стараются увеличивать для увеличения отношения сигнал/шум. Отношение сигнал/шум аналого-цифрового преобразователя можно определить по следующей формуле:

    SN = N × 6 + 3,5 (дБ)

    где N — количество двоичных разрядов на выходе АЦП.

    Не менее важным параметром АЦП является время получения на его выходе следующего отсчета цифрового сигнала. Получить одновременно высокую скорость преобразования и большую разрядность является очень сложной задачей, для решения которой было разработано большое количество видов аналого-цифровых преобразователей. Рассмотрим их основные характеристики и области применения.

    Наиболее скоростным видом АЦП являются . В этих видах АЦП требуется передавать большие потоки данных, поэтому они передаются в параллельном виде. Это приводит к тому, что параллельные АЦП обладают большим количеством внешних выводов. В результате габариты микросхем параллельных АЦП достаточно велики. Еще одной особенностью параллельных АЦП является значительный ток потребления. Перечисленные недостатки данного вида АЦП являются платой за высокую скорость преобразования аналогового сигнала в цифровую форму его представления. Скорость преобразования в параллельных АЦП достигает 500 миллионов отсчетов в секунду (500 MSPS). По теореме Котельникова максимальная частота входного сигнала может достигать 250 МГц. В качестве примера можно назвать микросхему AD6641-500 фирмы Analog Devices или микросхему ISLA214P50 фирмы Intersil.

    Для достижения еще более высоких скоростей преобразования используют параллельное соединение несколько параллельных АЦП, работающих по очереди. При этом для того, чтобы обеспечить передачу данных к обрабатывающей микросхеме приходится использовать несколько параллельных шин (по одной на каждый АЦП). В качестве примера подобного вида аналого-цифровых преобразователей можно назвать микросхему АЦП MAX109 фирмы Maxim, обеспечивающую скорость преобразования до 2,2 GSPS.

    Немного более экономичным видом АЦП являются . В этих видах АЦП в процессе аналого-цифрового преобразования участвуют цифро-аналоговые преобразователи. Высокая скорость подачи на выход отсчетов аналогового сигнала реализуется за счет конвейерной обработки. В результате для последовательно-параллельных FWG скорость преобразования и скорость выдачи на выход очередного цифрового отсчета не совпадают. В качестве примера можно назвать микросхемы AD6645 и AD9430 фирмы Analog Devices.

    Самым распространенным видом АЦП в настоящее время являются . Несмотря на то, что в данных видах аналого-цифровых преобразователей невозможна конвейерная обработка данных, а значит время преобразования и период выдачи данных на выходе АЦП совпадают, данный вид АЦП обладает достаточным быстродействием для работы в широком диапазоне задач.

    В настоящее время дискретизация сигнала в устройствах выборки и хранения (УВХ) и преобразование напряжения в двоичные числа (цифровые отсчеты сигнала) производятся в одной микросхеме. Типовая схема включения АЦП с параллельным выходом приведена на рисунке 1.


    Рисунок 1. Схема включения параллельного АЦП ADC0804

    В этой схеме для начала аналого-цифрового преобразования микропроцессор или программируемая логическая схема должны подать сигнал начала преобразования (в данной схеме это сигнал WR). После завершения преобразования микросхема АЦП выдает сигнал готовности данных INTR и микропроцессор может считать двоичный код, соответствующий входному напряжению. При преобразовании сигнала по теореме Котельникова частота дискретизации f д поступает на вход WR и ее стабильность обеспечивается микропроцессором.

    Следует отметить, что при обработке низкочастотных сигналов часто требуется выполнять одновременно и аналого-цифровое преобразование и цифро-аналоговое преобразование. В ряде случаев требуется в одной микросхеме объединять несколько аналоговых каналов, например, стереообработка звука. Кроме того, в данных видах микросхем в их состав включаются низкочастотные или полосовые фильтры, операционные усилители, что позволяет подавать на их вход сигнал непосредственно с выхода микрофона, а с выхода — на телефон. Подобный вид микросхем АЦП/ЦАП получил особое название — кодеки.

    Литература:

    1. Analod-Digital Conversion, Walt Kester editor, Analog Devises, 2004. — 1138 p.
    2. Mixed-Signal and DSP Design Techniques ISBN_0750676116, Walt Kester editor, Analog Devises, 2004. — 424 p.
    3. High Speed System Application, Walt Kester editor, Analog Devises, 2006. — 360 p.

    Вместе со статьей "Виды аналого-цифровых преобразователей (АЦП)" читают:

    Большинство датчиков и исполнительных устройств автоматиче­ских систем работает с аналоговыми сигналами. Для ввода таких сигна­лов в ЭВМ их необходимо преобразовать в цифровую форму, т.е. дискретизироватъ по уровню и во времени. Эту задачу решают АЦП. Обрат­ную задачу, т.е. превращение квантованного (цифрового) сигнала в не­прерывный, решают ЦАП.

    АЦП и ЦАП являются основными устройствами ввода-вывода ин­формации в цифровых системах, предназначенных для обработки анало­говой информации или управления каким-либо технологическим процес­сом.

    Важнейшие характеристики АЦП и ЦАП:

    1) Вид аналоговой величины, являющейся входной для АЦП и выходной для ЦАП (напряжение, ток, временной интервал, фаза, частота, угловое и линейное перемещение, освещенность, давление, темпе­ратура и т.п.). Наибольшее распространение получили преобразо­ватели, в которых входной (выходной) аналоговой величиной явля­ется напряжение, т.к. большинство аналоговых величин сравни­тельно легко преобразуются в напряжение.

    2) Разрешающая способность и точность преобразования (разре­шающая способность определяется количеством двоичных разрядов кода или возможным количеством уровней аналогового сигна­ла, точность определяется наибольшим значением отклонения аналогового сигнала от цифрового и наоборот).

    3) Быстродействие, определяемое интервалом времени от момента подачи сигнала опроса (запуска) до момента достижения выход­ным сигналом установившегося значения (ед. микросекунд, десят­ки наносекунд)

    В любом преобразователе выделяют цифровую и аналоговую части. В цифровой производятся кодирование и декодирование цифровых сигна­лов, их запоминание, счет, цифровое компарирование (сравнение), выра­ботка логических сигналов управления. Для этого используют: дешифра­торы, мультиплексоры, регистры, счетчики, цифровые компараторы, логические элементы.

    В аналоговой части преобразователя производятся операции: усиле­ния, сравнения, коммутации, сложения и вычитания аналоговых сигна­лов. Для этого используются аналоговые элементы: ОУ, аналоговые ком­параторы, ключи и коммутаторы, резистивные матрицы и т.д.

    Преобразователи выполняются в виде цифровых и аналоговых ИМС или БИС.

    Строятся на основе, представления любого двоичного числа X в виде суммы степеней числа два.


    Схема преобразования четырехраз­рядного двоичного числа

    Х=Х3*2 3 +Х2*2 2 +X1*2 1 +Х0 *2 0

    В пропорциональное ему напряжение.

    X i =0 или 1. Для ОУ

    К= –U вых /U оп =R oc /R

    R – общее сопротивление параллельно включенных ветвей, в которых были замкнуты ключи X.


    U оп =U c – опорное напряжение, подаваемое на вход ОУ через R.

    R oc – сопротивление ОС.

    Х=8Х3+4Х2+2Х1+1Х0, U вых =U оп *R oc /R o (8X3+4X2+2X1+lX0)

    U вых =(–U оп *R oc /R o)*Х; –U o п *R oc /R 0 =K – коэффициент пропорцио­нальности, для каждой схемы величина постоянная.

    - для нашей схемы.

    Для увеличения числа разрядов необходимо увеличивать число рези­сторов (R о /16; R o /32 и т.д.), при отличии резисторов в 1000 раз точ­ность снижается.

    Для устранения этого недостатка в многоразрядных ЦАП весовые коэффициенты каждой ступени задают последовательным делением опорного напряжения с помощью резистивной матрицы. (R-2R)



    По такому принципу построена схема 10-разрядного интегрального ЦАП типа К572ПА1 выполненного по КМОП технологии.

    Достоинства: малая потребляемая мощность, высокое быстродей­ствие не более 5мкс., хорошая точность.

    на каждый резистор 2R 2 МДП транзистора, подключаемые 1 и 0 (через инвертор). Четные (вх=1) соед. с вых. 1

    Нечетные (вх=0) соед, с вых. 2

    По способу преобразования делятся на последовательные, параллельные и последовательно-параллельные.

    В последовательных АЦП преобразование аналоговой величины в цифро­вой код идет ступеньками (шагами), последовательно приближаясь к измеряемому напряжению.

    Достоинство: простота; недостаток: низкое быстродействие.

    В параллельных АЦП входное напряжение одновременно сравнивают с Х– опорными напряжениями. При этом результат получается за один шаг, но необходимы большие аппаратурные затраты.

    Быстродействие; недостаток: сколько опорных напряжений, столько компараторов.

    Входное напряжение Состояние компаратора Двойное число
    U c , U 7 6 5 4 3 2 1 2 1 0
    U c <0,5 0 0 0 0 0 0 0 0 0 0
    U c ≤U c <1,5 0 0 0 0 0 0 1 0 0 1
    1,5≤U c <2,5 0 0 0 0 0 1 1 0 1 0
    2,5≤U c <3,5 0 0 0 0 1 1 1 0 1 1
    3,5≤U c <4,5 0 0 0 1 1 1 1 1 0 0
    4,5≤U c <5,5 0 0 1 1 1 1 1 1 0 1
    5,5≤U c <6,5 0 1 1 1 1 1 1 1 1 0
    6,5≤U c 1 1 1 1 1 1 1 1 1 1


    Процесс преобразования непрерывного сигнала в код состоит из квантования и кодирования.

    Квантование – это представление непрерывной величины в виде конечного числа дискретных значений (например, уровней потенциалов), а кодирование – это перевод комбинаций дискретных значений в двоичные числа для обработки информации в ЭВМ.

    Из входных устройств преобразующих аналоговые величины в соответствующие коды двоичных чисел комбинаций, интерес представляют устройства типа напряжение-число.

    Рассмотрим:



    bc = t∙tg α =>

    Входное напряжение преобразуется в промежуточную величину «интервал времени», которая в свою очередь преобразуется в цифровой код (временная система кодирования).

    Входное напряжение U вх сравнивается с пилообразным напряжением U п изменяющимся по линейному закону.

    Отрезки b 1 c 1 , b 2 c 2 , b 3 c 3 представляют собой дискретное значение входного напряжения. Интервал от начала сравнения до момента равенства напряжений U вх = U п является катетом треугольника с углом наклона α. Все три треугольника подобны, следовательно, tg α = const. Поэтому можно сказать, что отрезки bc в каком-то масштабе пропорциональны соответствующему интервалу времени t. Следовательно измерение дискретных значений напряжений можно заменить измерением пропорциональных отрезков времени, заменяемых двоичным числом.

    ГСИ – генератор синхроимпульсов;

    И – схема совпадений (логическое умножение);

    Сч – счетчик;

    Т – триггер;

    ДИ – датчик импульсов;

    ГПИ – генератор пилообразных импульсов;

    = – схема сравнения или компаратор;

    ГСИ вырабатывает серию импульсов определенной частоты, определяющий частоту преобразования, импульсы поступают на вход счетчика через схему И, которой управляет триггер. При нулевом состоянии триггера на выходе схемы И – 0 и на вход счетчика импульсы не поступают. Начало временного интервала формирует управляющий импульс УИ, устанавливающий триггер в 1 и определяющий начало отсчета импульсов в счетчике.

    Uп
    Uвх
    ГСИ
    Конец временного интервала задается управляющим импульсом УИ2, который устанавливает триггер в 0, и прекращает поступление импульсов с ГСИ в счетчик. Схема сравнения (аналоговый компаратор) сравнивает преобразованное напряжение U вх с опорным напряжением U п, вырабатываемым ГПИ.

    В момент совпадения обоих напряжений единица на выходе компаратора вырабатывает импульс УИ2, устанавливающий триггер в 0, определяющий конец временного интервала.

    Число прошедших на счетчик импульсов – это код, пропорциональный дискретному значению преобразованного напряжения.

    Точность преобразования определяется точностью сравнения напряжений и положением управляющего импульса относительно импульсов. ГСИ.

    Поскольку информация на входах цифровых устройств обычно представляется в двоичном коде, а большинство исполнительных механизмов для автоматизированного управления технологическими процессами (исполнительные двигатели, электромагниты и тому подобные), как правило, реагируют на непрерывно изменяющиеся уровни напряжения или тока, для преобразования информации из цифровой в аналоговую форму используют цифроаналоговые преобразователи (ЦАП) . Помимо широкого промышленного применения ЦАП используются в современной бытовой электронике, например, в системах высококачественного воспроизведения звука, записанного в цифровой форме на световых носителях информации.

    В системах автоматизированного управления для получения информации о состоянии контролируемого промышленного оборудования применяют различного рода преобразователи (датчики) неэлектрических величин в электрические сигналы, которые чаще всего представляются в аналоговом виде. Для последующей обработки этой информации при помощи цифровых устройств такие сигналы должны быть предварительно преобразованы в цифровую форму. В самом общем случае преобразование аналог – цифра выполняют в два этапа. В начале непрерывно изменяющийся сигнал заменяют его значениями в дискретные моменты времени, что называют дискретизацией во времени. Затем эти значения сигнала подают на вход аналого-цифровых преобразователей (АЦП) , которые с некоторым шагом квантования по уровню представляют их цифровым эквивалентом в виде двоичного кода.

    Основными характеристиками ЦАП и АЦП являются быстродействие и погрешность преобразования, определяемая абсолютной погрешностью преобразования и относительной разрешающей способностью. Быстродействие ЦАП и АЦП характеризуется временем преобразования: для ЦАП это отрезок времени после поступления входного двоичного кода до установления его выходного аналогового сигнала; для АЦП – интервал времени от его пуска до момента получения выходного двоичного кода.

    Абсолютная погрешность преобразования равна половине шага квантования по уровню . При шаге квантования , например, n – разрядный ЦАП должен обеспечивать различных значений выходного напряжения, максимальное значение которого называют напряжением шкалы , связанным с соотношением . Относительной разрешающей способностью называют отношение шага квантования по уровню к напряжению шкалы. Для n-разрядных ЦАП и АЦП .

    Цифроаналоговые преобразователи. ЦАП представляют собой устройства для создания аналогового выходного значения напряжения (или тока), соответствующего числовому эквиваленту двоичного цифрового кода на его входе. Зависимость выходного параметра ЦАП, например, напряжения на его выходе, от кодового эквивалента входного сигнала называют характеристикой преобразования. На рисунке 3.36а представлена характеристика преобразования четырёхразрядного ЦАП.

    Принцип действия простейшего ЦАП поясняет схема на рисунке 3.36б. Основу ЦАП составляет матрица резисторов, подключаемых ко входу операционного усилителя ключами, которые управляются двоичным кодом (например, параллельным кодом регистра или счётчика).

    Коэффициенты передачи по входам , , и равны соответственно:

    где - числа, принимающие значения 0 и 1 в зависимости от положения соответствующих ключей.

    Выходное напряжение ЦАП определяется суммой:


    Таким образом, четырёхразрядный двоичный код преобразуется в уровень в диапазоне от 0 до 15 , где - шаг квантования. Для уменьшения погрешности квантования необходимо увеличивать число двоичных разрядов ЦАП.

    Микросхемы ЦАП после номера серии в обозначении первой имеют букву П (для всех преобразователей), а второй – букву А. На рисунке 3.36в представлена интегральная схема типа К572ПА1, представляющая собой выполненный на основе КМОП - технологии десятиразрядный ЦАП с временем преобразования не более 5 микросекунд. К сожалению, при разработке этой интегральной схемы технологически не удалось на одной подложке вместе с КМОП – ключами и (R-2R)-матрицей выполнить и схему ОУ, поэтому ЦАП К572ПА1 всегда дополняют внешней микросхемой ОУ, подключение которой также показано на рисунке 3.36в. В заключение отметим, что ЦАП К572ПА1 обеспечивает уникальную возможность выполнить операцию умножения аналоговой величины на другую величину, задаваемую двоичным цифровым кодом на входах D0-D9, при этом результат умножения представляется также в аналоговом виде выходным напряжением ЦАП. По этой причине ЦАП К572ПА1 иногда называют умножающим.

    Аналогово-цифровые преобразователи АЦП представляют собой устройство для сопоставления цифрового двоичного кода уровню аналогового сигнала на его входе Характеристикой преобразования АЦП называют зависимость числового эквивалента двоичного кода на выходе АЦП от нормированного к напряжению шкалы входного аналогового сигнала . Она также представлена многоступенчатой ломаной линией, подобной изображённой на рисунке 3.36а, с той лишь разницей, что для четырёхразрядного АЦП оси абсцисс и ординат меняются местами.

    В настоящее время наибольшее распространение получила классификация интегральных АЦП на основе рассмотрения характера развития в них процесса преобразования во времени. Согласно такому подходу все интегральные АЦП можно разбить на три типа: последовательного действия (развёртывающего типа) и параллельного действия (параллельного типа). К АЦП развёртывающего типа относят АЦП с последовательным счётом, с поразрядным уравновешиванием (последовательных приближений) и интегрирующие АЦП.

    Структурная схема АЦП последовательного счёта представлена на рисунке 3.37. Постоянное (в течение времени действия импульса считывания, длительность которого выбирается чуть меньше периода дискретизации ) положительное напряжение поступает на неинвертирующий вход ОУ DA1, работающего в режиме компаратора. На инвертирующий вход DA1 подаётся выходное напряжение ЦАП DA2 (например, с генератора линейно изменяющегося напряжения), цифровые входы которого подключены к выходам двоичного счётчика СТ2. В исходное нулевое состояние счётчик СТ2 устанавливается импульсом на его входе сброса. АЦП запускается импульсом на входе «Пуск», разрешающем работу счётчика СТ2, на счётный вход которого поступают тактовые импульсы, следующие с частотой повторения .

    Аналого-цифровые преобразователи (АЦП) – это устройство, с помощью которого происходит процесс преобразования в числовое представление входной физической величины. В качестве входной величины может быть ток, напряжение, сопротивление, емкость.

    АЦП тесно связан с понятием измерения, под которым имеется в виду процесс сравнения с эталоном измеряемой входной величины. То есть аналогово-цифровое преобразование рассматривается в качестве измерения значения входного сигнала и, соответственно, к нему можно применять понятия погрешности измерения.

    АЦП обладает рядом характеристик, главными из которых являются разрядность и частота преобразования. Разрядность выражается в битах, а частота преобразования – в отсчетах в секунду. Чем выше разрядность и скорость, тем сложнее приобрести необходимые характеристики и тем сложнее и дороже преобразователь.

    Принцип АЦП, состав и структурные схемы в значительной мере зависят от метода преобразований.

    Классификация

    В настоящее время известно большое число методов преобразования напряжение-код. Эти методы существенно отличаются друг от друга потенциальной точностью, скоростью преобразования и сложностью аппаратной реализации. На рис. 2 представлена классификация АЦП по методам преобразования.

    Среди разновидностей аналого-цифровых преобразователей, наиболее популярными являются:

    1. АЦП параллельного преобразования. Обладают низкой разрядностью и высоким быстродействием. Принцип действия заключается в поступлении входного сигнала на «плюсовые» входы компараторов, а ряд напряжений подается на «минусовые». Работа компараторов осуществляется параллельно, время задержки схемы складывается из времени задержки в одном компараторе и времени задержки в шифраторе. Исходя из этого, шифратор и компаратор можно сделать быстрыми и схема получит высокое быстродействие.
    2. АЦП последовательного приближения. Осуществляет измерение величины входного сигнала, производя ряд «взвешиваний» или сравнений величин входного напряжения и ряда величин. Характеризуется высокой скоростью преобразования и ограничен точностью внутреннего ЦАП.

    3. АЦП с балансировкой заряда. Принцип действия заключается в сравнении входного напряжения со значением напряжения, которое накоплено интегратором. Импульсы подаются на вход интегратора отрицательной или положительной полярности, исходя из результата сравнения. В итоге, напряжение на выходе «прослеживает» за входным напряжением. Характеризуется высокой точностью при низкком уровне собственного шума.

    Аналого-цифровое преобразование используется везде, где требуется принимать аналоговый сигнал и обрабатывать его в цифровой форме.

    • АЦП является составной частью цифрового вольтметра и мультиметра.
    • Специальные видео-АЦП используются в компьютерных ТВ-тюнерах, платах видеовхода, видеокамерах для оцифровки видеосигнала. Микрофонные и линейные аудиовходы компьютеров подключены к аудио-АЦП.
    • АЦП являются составной частью систем сбора данных.
    • АЦП последовательного приближения разрядностью 8-12 бит и сигма-дельта-АЦП разрядностью 16-24 бита встраиваются в однокристальные микроконтроллеры.
    • Очень быстрые АЦП необходимы в цифровых осциллографах (используются параллельные и конвеерные АЦП)
    • Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика (сигма-дельта-АЦП).
    • АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора.
    • Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС.

    34. Цифро-аналоговые преобразователи, назначение, структура, принцип действия .

    Цифро-аналоговый преобразователь (ЦАП ) - устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами.

    Аналого-цифровой преобразователь (АЦП) производит обратную операцию.

    Звуковой ЦАП обычно получает на вход цифровой сигнал в импульсно-кодовой модуляции. Задача преобразования различных сжатых форматов в PCM выполняется соответствующими кодеками.

    ЦАП применяется всегда, когда надо преобразовать сигнал из цифрового представления в аналоговое, например, в проигрывателях компакт-дисков (Audio CD).